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The Interaction of an Acoustic Wave and an

Elastic Spherical Shell1

By
2

Pauline Mann

I. IntroductLon

The p)roblem to be considered here, that of a plane

pressure wave impinging on a thin spherical shell, was sug-

gested by G. F. Carrier in consequence of work previously

done by him on a related problem [i]. (cf. also [6].)

An attempt had been made to determine the response

to an incident acoustic wave of a thin elastic shell, in particu-

lar a cylindrical shell, taking into account both the incident and

diffracted waves. The form of the functions dealt with in the

analysis made it difficult to obtain accurate explicit results.

If the obstacle is taken to be spherical in shape, we still have

a fairly practical though highly simplified model of an actual

physical structure; moreover, the problem becomes mathematically

simpler, admitting of exact solutions for the deformation and

accompanying strains in the elastic body. It was therefore

decided to treat the case of the sphere in detail.

1. The results presented in this paper were obtained in the cours
of research sponsored by the Office of Naval Research under
Contract N7onr - 35810 with Brown University.

2. Research Associate, Brown University.
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We will, as for the cylinder, deal with the linearized

theory of wave propagation in a compressible fluid, and with

small deflections of the shell.

II. Forced Vibrations of A Thin Spherical Shell.

We consider a closed shell of thickness h with h<<R

where R is the radius of the middle surface. The motion of any
1

closed oval shell, in particular a spherical shell is, by a

theorem of Jellett [2], primarily extensional. Therefore the

general membrane theory of shells is applicable. If we locate

the origin of our coordinate system at the center of the shell,

and choose as the z-axis the direction of propagation of the

incoming wave, then we have the additional simplification of

symmetrical loading (c.f. Fig. 1). The equations of dynamic

equilibrium for an element of shell may therefore be written [3]

a 2v R2

(No R sin e) - N R cosO - ph R sine = 0 (2,1)

No = (s - ph -- )R = O. (22)

Here Nq and Ne are the normal forces/unit length acting on the

sides of the element, s is the applied force (radial in direc-

tion), p is the shell density, and v and w are the tangential and

radial components of the displacement.

To eliminate N and Ne from equations (2.1) and (2.2)

we make use of Hooke's Law

1. Principle radii of curvature finite and of the same sign.
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-ee - -(Ne "v N,) (2.3)

- z-.(Nc - VNe) (2.4-)Zpp Eh

and the expressions for the strains in spherical coordinates

e [ a.v+ w] (2.5)

1- [v cot e + w], (2.6)( =P R
Combining (2.3), (2 .4), (2.5) and (2.6), we obtain N and N

in terms of the displacements w and v

N + Ne h [cot + 2 + ] (2.7)Yz-v Rct R R 81

Ne N r E = -_[cote "lA8v] (2.8)

so that the equations of equilibrium become

Eh [v(-v + .) + .- + + § ctn e - v ctn2 01

-v8 ae2  ae ae

0- ph R2 = O (2.9)
Ot2

Eh[v ctn e + 2w + - [s- h R2 = 0. (2.)

1-Ve at R 2

An equation in v only can be easily obtained as follows.

Consider the operator

2+ (1-v) R2  2  (211)= =O E at2"(.1

MO(w) is found from (2.10) to be equal to

-v ctn e - av + lIZv R2s. (2.12)-ae Eh
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if MO is then applied to (2.9), and (2.12) substituted wherever

M (w) appears, a relation in v only results:
0

Mo(2.9) - 2(1-v2 )pR2 02v (l-v2)(l.v)p2R4 64v
E (29 + + 2vv2 2

2 a.2 v a2v (1-v)pR2  av+E 8t2 - 2 g2 E at2 a8 2

+ 2v t0 + _(1-v)pR 2  2 va+ 2v ctn2 E ctn 2e -2 - 2 ctnO 0 v

E3p 0 3v ctn e - [l+v][-ctn e Lv + v csc2 0
E ae at 2  (30

__0v+ (i- v)R2 CIS .(1302 Eh (2.13)

A similar procedure2 is used to arrive at an equation for w:

2w - R(s - h w) 2(l+v)pR2 a2w (1-v2 )pR 2s

Eh at2 E t2  E2h
(1- 2  4 8w 82w R2  a" ( - o+ ctne - + 2 ctn e -

E2 86 a62 Eh ae
R2 82 s ct 83w +R 2  64wRh a 2 +  72 ctn e a + pR o.a 0 (2.14)
Eh E at 2 ae E 8t 288 2

If we introduce the new variables
v*== w.2.t 2  _ 2 s RsR* v* 2 R= Eo 2 s* = -

B' 's~ Eh

then (13) and (14) reduce to the simpler non-dimensional forms

2. The operation L1(2.9) + L2 (2.10), where L = -(ctn e + a)

and L2 = 1 + ctn 0 a_ + & . PR2 82 6t
60 8e- " -.- ' gives the

desired result.
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M(v*) 2 2(1-v 2 ) 82v*+ (I. 2lv) 8v2 2vv*+
a+ 2M* 2 (1(l- )---

2

12 v) 8 + 2,* ctn2 8 ++(l-v)ctn 28 -

a02 etdte
2 ctn 0 v* - (I-v)ctn 0 av* + [ +6V]tn

280

v csc 2 8 + 82 j = (.2 2S*

and

L(w*) ctn 0 (3w* +a 3w ) +2w* + 4

8 -w + 2 w * + + W 2 2
-Z'2)a ~ * aw 2 (l a2w*

(1-v + (l-v) -i - 2 (+v) -
2 (Nv2) a2

ctn 0 as* - (1- 2)  s+ 2s§+ (1.v)s*. (2,16)-e 7,r2  ae2'•

III. Acoustic Wave Propagation.

As in the cylindrical case [1] we have the acoustic

wave equation

Acp -X 2 P 0 (3.1)

where (p is the velocity potential, Ay is the Laplacian in

spherical coordinates and X2  R2 = .. (c2 is the acoustic
t2c2  pc2

speed of the fluid.) The pressure perturbation p is again given

by
p -*cp (r,8,t)

(3.2)
p fR2  p

P* = 2

to P

where pf is the fluid density. The applied stress s of (2.2)

must of course be the same as the acoustic pressure p at the

surface of the sphere. We have in fact

4
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s* = - -- W - ,T(l,e, ) = --- OTe,) = P, (1,T)
so so ph I

IV. The Interaction Problem.

We now pose the following problem. An incoming plane

wavej po% obeying (3.1) impinges on an elastic spherical shell

causing it to vibrate according to (2.15) and (2.16). The

vibrating body acts as a scatterer and, to a lesser extent, as

a radiator. The outgoing waves (scattered and radiated) also

obeying (3.1), in turn influence the nature of the vibrations.

At the surface of the shell, the radial velocity of the fluid,

must be equal to the radial velocity of the shell,

w*(er). We wish to determine the motion of the sphere and the

pressure distribution associated with the incoming and outgoing

waves.

The pressure associated with the incident wave is

taken to be [1]
Qo b (z-TA) z <_ T A

0 z >
z> /rQ+l

so that the initial velocity potential is

QXb(z- IA) Q0×
,Q°- e(- --- z < 'U/

= 0 p*b ('+.2)

0 z> TA.

For simplicity let

Q0 Qo

Qo (h-.3)w * =p W p,
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Then our boundary value problem is defined by the following

set of equations:
3

L(W) = [X (l,,r)ctn e - (1-v 2 )X r(1,e,r) + x,1(le,r)

+ (l-v)x (l,e,t)] (4,4)

M(V) = P(l-V2 )x (l,e,t) (4.5)

- x2 .* 0 (4.6)

w (e,T) =Xr (let) [Boundary Condition] (4.7)

{ z e - - (4.8)
0 z >/

These equations will be more easily handled if Fourier

transforms are first introduced to eliminate the time dependence.

Denote the transform of a function F by F. Then F and F are

related by:

~+00
7(r, -ia) F(r, )e d .9a)

where a is any positive real number.

F(r,e,) = 1 e +0 F(r,e,q-ia)e it dq

or, letting q-ia =

F(r,e,-) = -ia+0 °F(r,,)ei< d . (4.9b)2 iJ a- - o

This generalized definition of the Fourier transform has been

used because the usual definition, F(re,9) = F (r 1 ,)e" drJ-00

3. The operators L and M which appear here are those given in
(2.15) and (2.16).
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fails in the case of the function Xw b

Applying (4.9a) to (3.4) through (3.8) we obtain

i)= i t[ ctn + 1 e +2,1, + (-V) + 2(1_V2)7] (4.10)

where ctn ( 2 ) + 2 + - 2 2a 2

aG a e2  a62

- (l1V2) A 4 (-v)2 + 2(1+v)2}

where

-f-2(1-v2)C2 + (1-V 2)(1-v) 4 + 2v - v (1.v)C2

- 2 _ +(l-v) C2 + 2 ctn 2 0 . (1-v) 2 ctn2 0
a02

- 2 ctn 0 a + (l-v) 2 ctn a -+ (l+v)(ctn 0

- csc2  + a)}
a02 j

A + 022= (4.12)

igW(e,E) = r(l,0, ) (4 .13)

-ikz-o =-e)elr
0 i(/+i) = "f(e eircos 0 (4.l14)

It can be shown, using the method of separation of

variables on (4.12), that ' is of the form

r-l/2 [Jn+.( r) + CYn+ (X r) Pn(cos 9)].

4. It should be noted that for the functions we are interested
in, the tendancy of the integrand in (4.9a) to become
infinite for large negative T is only apparent. Actually,
'0 = 0 for -o < t/k < z; and W, V, and * are zero until
the wave hits the shell, i.e. for -oo < /X<-l, so that
integral of Q+.9a) always exists.



B11-11 -9-

Since the waves associated with p must be outwardly moving7 take

C = -i and write:
00 (2)@A h nt (% r)Pn(cos 0 (4.15)
nO n

where

h ( 2 (M r) = ()/ [Jn(~Xr) - iY (M r) ]
nl n+ r

*o may be expanded similarly:

00
° =-f( ) 7 (2n+l)(-i)njn(Xkr)Pn (cos ) (4.16)

n=O

Co
= 7 Bn()jn(X~r)Pn(cos 9)

n=O
wherejnkr= I J+(r)

From the work of Lamb [4] we know that the complete solutions

for W and V may be written:
CO

W(, = Wn()P (cos 9) (4.17)
=O n

=- Vn(C)P (Cos 9) = -Z WnP'(cos 9 )sin 9. (4.18
n=0 n=O 7;n

Substituting these expressions into (4.10), (4.11) and

(4.13), we get three algebraic equations for the three unknowns

Wn, Vn and An*

[(1- 2)(n2+n) - 2 + (1.-v2)E + (1-v) 2 - 2(l+v)C2]7n
2=C _ A (2)

-ig[(l-v) + (l-v2)(2 (n 2 + n) (() + Bn j n(X)] (4.19)

[2(l+v) 2 - (l-v2)C4 + v 2 + 1 + (n+na-1)(C 2 -1)]Vn

= i(+v + Bnn()] (4.20)

n nnW
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XtBn() 'n (%X An (Ekh = iEWn  (4.21)
in.

These are readily solved to give:

= (2n+l) (-i)n C2  (4,22)

Xn (:2 + i)[CXh( 2 )' + iC2hC]2n 2 n

=- -(2n+l) (-i)np(l+v) (4.23)

An~~~ ~ = [1+Cc4) (1)
+ i c)[ hnh(~ +2

)~)

n2) +- + n - (2n+l) 1-1) n  (4.24)
2 ClXh (2 ) + iC h(2 ) ~n 2 n

where

C 1 = (l- 2 )(n2+n) - 2 + (l-2)E 4 + (i-V)A 2 - 2(i+v) 2

C2 = i([(l-v) + (l-v2 )C2 - (n2+n)].

The quantities of physical interest to us are the stresses and

radial acceleration associated with each vibrational mode, and

the total pressure distribution. These can all be found at least

in principle from (4.22), (4.23)9 (4.24), (4.15) and the in-

version formula (4.9b).

V. Numerical results for the shell.

The transforms of the stress components will all be

linear combinations of Wn and Vn (in general, gl(e)Wn + g2(e)V) ,

and the transforms of the radial accelerations will be - 29no

From (4.22) and (4.23) we see that these expressions are regular

in except for a finite number of poles. The theorem of resi-

dues can therefore be used to evaluate the integral of (4.9b).
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The computation will be carried out in detail for the three lowest

modes. The parameters will be taken as

= 17, b = O, 2  .3
3

the values appropriate to a wave of infinite length impinging on

a steel shell in water.

Zeroth Mode. For this mode, the motion of the sphere

is very simple, consisting of uniform (0 - independent) expan-

sions and contractions of varying amplitude and neriod.

The stresses, NP and No, are given by

Eh Wo QoR
N =N = - w .

- 1-V R - (1-V) 0

1-iaX+oo 20e(~+1=o _ f (1- V)k2 dC

02nt -iaX-oo 2C(C3-k2 -181C2+ik )

Here k2 _ 2X2
1-v '

The integrand is regular except for poles at

C= 0, 16.581, +1 + .711

with residues respectively of

1, 0060e1 6 " 5 8(+1), and -I.2818e-'71 (' +1)sin( + 1.89).

Jordan's lemma can be adapted to give

W0 = -" [ 1.00 - 1.2818e'71 (r +l)s in + 1.89)

2 7

- 0.0060e-16.5 8 (c +1)] (F.l)

A plot of -2N /RQ appears in Figure 2. 5

5. These scales will also be used inplotting the 1st and 2nd
modes. The reason for their choice will become clear on
page 18.
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The radial acceleration is found directly from (5.1)

to be

E2 2 - QE 2  e X 009 i sin (X + 1.89)

Eh~ ~2

-16.58 ('_. +1)
+ 0.2697 cos(T + 1.89) -0.2427 . (5.2)

4+Eh 2]5
The plot of - - appears in Figure 5.

QOR 0

There is an alternative to the-computational scheme we

have used, in which the integrand is expanded in a power series

about infinity and the series integrated term by term. Since

there was a possibility that it might prove simpler, this was

tried out, the zeroth mode acceleration being taken as a test

case.
82Wo_ 1-iak+oo e ic +i) d

a% 2-n J 3-kC-181 2 + ik 2

-ia - co
4+Ehw.423

Q Rp--Joe + l81C

- 299t74 - 497i " 5 + 82201C" 6 + ... ] dC

- + 1) - 36( + 1) 2 + 2 (299) (:E 1) 3+ .] (5.3)

The results, which appear in Table 1, demonstrate the impracti-

cality of this new procedure. It is apparent that at least 12

terms are needed to find only the first maximum to within 10%

These scales will also be used in plotting the 1st and 2nd
modes. The reason for their choice will become clear on
page 18.
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First Mode

The stress components here are

N N = + ] Eh v cot N@ - V m R 1 (1-V" [2R--- R1

Q0R + 6V FRW, - ViCos 9,=W 8G-)B (1-v)p 1

= - -iaX+ oo 2eiX dCw3-v it, __ __ __ __ __

1I= 2n- -ia -oo 2i + 3a3 - 113'i - 575C + 575i

The integrand has poles at

C = 1.17i, 16.58i, and +3.81 + o.645i.

On computing the residues we obtain

-1.)17iE76e1)16. 58 (u+1

= .9666e - 17( - O. +1)

.l8488e-O 625( +l)sin[3.811(7 +1) + 1.479] (5.4)

Figure 3 shows a plot of -2N/RQo at the point 9 = n.

The radial acceleration is found most easily by in-

verting the transform, - 2;1 cos 9.
rm,

2 R 2 W 0
2 a2W

a ~ w ~ =OR" 2W QR ,Cos 9

-iaX+ 2o2W, (102 21275) ei( +ldC-

i aj 2ni v 21C4 + 3 8 C3 - 1 1 3 1 2 5 7 % + 5 7 5 i -

-ia -oo

1.064e-'1 (X +sin 2.72+3.8o +1)(

-3.5335el 8( +) + 3.117le1.17?T +1 )
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4Eh 62w
Q] V I is plotted for Q =7c in Figure 6.

Second Mode,

In general, the two tangential stress components are

not equal to each other for this mode. Ile have, in fact,

N Eh Fe c] N) Eh F]cp4.W

whereo9 [+io[W+aV] QR[ os2 o(
2  Eh3 ;G EhP V 0W2 )

+ (3v 2 - W2)]

S= [W + v cot 1 W 2[+ V cotR Q2 EhP 192

L°R3  221- +
= 3 cos 2 Q(-V 2 + jW2 ) - -

[676.812% 3 - 34491.4625 Is i](e + ) dCW2 -L -- i
2n D

-ia-oo

-. iaX+co i~ 1
V 1 f 81+60.15625Ce - + - ) d+

-ia%-oo D

where
D =-.91C7+19.11 iC6+123.725C5.1119.475 iC4 -329245C3+

+4212.25 i 2+2756.25C-2756.25i (5.6)

The denominators have seven zeros:

16.54 i, +7.35 + 0.43i, _0.86 + 1.79 i, +0.92 + 0.007 1.

The theorem of residues gives
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W2 = 0.213e16. ' +1) x +){0426[sin 7.3483( +1

288c[-1879(79 +1)

0.24 + ) .co+ o.o21o2(s nij},-

V2 = O.O82el16 g(X e X 0012s73( + j
+ 0.0888 COs[7.35(:I ]+ 2e1.9(X ){.81172sin 0o8578(

+1] + 081 cos[o.8579( +)]}- -2e' 007( + 3.6o*sin .9242(S- +1)]+1 .9634 cos[0.9242(M~ +1)14 (5.7)

At 0 = it where the greatest stresses occur, N0  N N=

+(0.088 ( o2-3V2)A plot e - for = + appears in Figure .

The radial acceleration is given by

@si 2  Eh 8t2 2  Eh 0 92 4

at2 = t " No D

where D is given in (b.6).

62 [616 5+(1 +) + 0e 3(+I'.64 sinL?.3 83(3+

a7 = 6,6576 e '+ e x o.6 i[38(:

+1)1- 0.2457 Cos r 3 83( +1}+ e.79(&)8.939 sin0.8578

" +1)] - 6.9956 cos[0.8578( +1)1+ e-OO07 C- +1)

{6902 sin[0.9242(K' +1)]+ 0,,5966 cos[0,92112q +') 1)



Q0R 8,2 22 is Plotted for @ =n in Figure 7.

If we examine Figures 2, 3, and 4 it becomes evident

that the stresses in the lowest mode are very much greater than

those of the 1st and 2nd modes, and very likely those of the

higher modes as well. In this connection it should be recalled

that the plots in Figures 3 and 4, which were made for G = nt

show the largest stresses which can occur in the first and second

modes at any time. We may therefore consider the resultant

stresses in the sphere to be predominantly those of the zeroth

mode.

The case of the acceleration is not so simple. A

picture of the total acceleration cannot be gained by looking

at the lower modes. In fact, it would seem from Figures 5, 6,
00 2

and 7, that the series, Z _n does not represent the total
n=O 2

acceleration for all r. The rate of change of radial accelera-

tion is very great for the first three modes at T/ = -1, Q =a;

probably the total radial acceleration as summed mode by mode will
00 a2Wn

be discontinuous at r = -\, n .. This indicates that 7
a2w n=-O =6W

2w a2w
does not converge uniformly, and therefore that - ?n F -uY

This difficulty, associated with the use of the series expansion

as a method of solution, will be encountered again in Section VI

when we discuss the resultant pressure distribution. By antici-

pating the results of that section, we can find the initial value

of- at 0 = i.

Equation (2.2) gives, for T/A = -1



S p h 82w_ h cl2 w

2

-S #Eh 8 w

Q-- QoR a7

Taking

S -2Qo ((6.9), = n)

we have 4Eh aw

Q 2  .. = 8.

Thus, while we can obtain a very good approximation of the

stresses by considering only the lowest mode, the same is

definitely not true of the acceleration. The actual initial

acceleration is about 40 times as great as the maximum acceler-

ation in the zeroth mode. The agreement obtained by considering

the first and second modes along with the zeroth is not appreci-

ably better; the results still differ by more than a factor of 6.

Quasi-Static Case.

It is of interest to compare the hoop stresses we have

obtained, as represented by those of the zeroth mode) with the

stresses for the quasi-static case; i.e. for the case in which

the sphere is taken to be rigid and scattering is neglected.

Since the effects of only the incident wave are con-

sidered, we have for the pressure at time t

Q021R(tc+R) Qo + 1)+IR2 2

pressure =

Qo +l< <C.0A
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The stresses are given by

=N --
RQoT +1)

2

- V appears as the dotted line in Figure 2, where it can be

RQ0

seen that the very simple quasi-static case aDproximates the

more exact dynamic case very closely. The stress developments,

while slightly out of phase, are essentially parallel with a

difference in maxima of only 1%.

For -1 < TA _ 1, there will be an unbalanced force,

due to the incident wave, acting on the sphere. This will re-

sult in an acceleration of the rigid body in the z-direction.

The magnitude of the force is

o 0 R 2Q0 cos 9 sin 9 dy = Q sin

= Q 0[R 2 - (tc) 2 ]

= Q oR2[I - (,T) 2 ].

Therefore
2 2[

YtR2hp Q-z = Q nR 2 [I (.)2]

4Eh a2z
R2 = - ()2]

4Eh a 2 z (

This has been plotted for purposes of comparison in Figures 5, 6,

and 7 (dotted curves).
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The maximum acceleration in the zeroth mode is only

one fifth that of the rigid sphere. The resemblance is greater

for the first mode, where the two significant maxima occur within

the time IMI<l, the larger being one half that of the rigid

sphere. In the second mode where we begin to have large nega-

tive accelerations, there is considerable difference in form

between the dynamic and quasi-static cases although the maxi-

mum positive acceleration of the former, .7) has moved still

closer to the rigid body value of 1.

This value of 1 is, we recall, very much smaller than

the maximum of the total radial acceleration for the dynamic

case (p. 17).

VI. Resultant Pressure distribution.

From (3.2), (4.2)9 (4.15), (4.24) and (4.9b) the total

pressure is knoim to be:

Ptotal = P (Incident) + P11 = -P*T Q = X

1Q11 0 IV+0
= Qo -'" £_oo~ ~d

o + 2' -ia+oo L - 2d 2

Q+ i+ hr 1

+ h(2) P n(cos Q)dE (6.1)
C Xh(2)1 + Cn

ln 2n

where Cl and C2 are given on p. 10.

Unfortunately, the order of summation and integration

in (6.1) cannot be interchanged, i.e. the total pressure cannot

be found as the sum of the pressures associated with the
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individual vibrational modes. This can be seen for the specific

case r = 19 - = -T , and Q = n as follows. At the moment of

impact, t = -T X we have for each mode and for all @, v =w n

O2Vn- 2Wn ,= 0 Our equations of equilibrium, (2.9) and (2.10)
Sat2  at 2

require that the pressure at the surface of the sphere must like-

wise vanish for each mode at T = -X, so that the total pressure

would be zero for all Q. We should expect however, from what

is knovm of the theory of scattering of plane waves, that the

pressure Q0 would be doubled for 9 =n and not reduced to zero.

Alternatively, we recall from p. 16 that the total

radial acceleration is discontinuous at T - -Xi 0 = Q. Therefore

the total pressure as summed mode by mode will be discontinuous,

indicating the non-uniformity of convergence of the series in

(6,1).

Because of this peculiarity in convergence, it is not

possible to obtain an approximate solution for the pressure by

considering just the first few terms of the series, T-, (4.15),

must be found in closed form if Ptotal is to be evaluated. This

has not as yet proved feasible because of the complexity of the

summation which must be made, It was noted however that the

expansions for o and T are very similar for r = 1, and very

large or ( - cos 0) very small. This fact can be used to ob-

tain the pressure at the surface of the sphere for /X z cos 0.

By comparison with the expression for 0 on page 9

it is seen that the pressure associated with the incident wave

may be written
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-ia+ 0c
P,- Qo 0 " f e Z6 j(r)P (cos 9) (2n+1) _-,)n dC

For >> and r = 1, PII (cf. 6.1) becomes, to first order

o-ia%+oo <li -uA inC),I Qo ei-/X o sin(. - " 2 (2n+1) (-i)nPn(cos Q)d

II 2n c -oo n O 2 (6.2)
and PI reduces to

-ia%+coPI Ooi ei4u/ co Cos(4
P - £ e E - (2n+l)(-i)nPn(cos Q)dC.

n2 n . 0 C(6 *3)

Equations (6.4 ) and (4.I4) tell us that

i~~cos 9 00 _npco

Ce- o . cos( -Ct) (2n+l) (i)nPn(COS 9).
C -4 0 nO 02 2

Therefore, take

00
- )e- i ' 1 2 c 5  Y - sin(( - 12 C4 0oo n:0 2 2

S(.i)nPn(cos g)

so that to first order:
Qo .eic ( - cosO) cos o

PII = 2 - e 2 dC

! (Cos +~-Qe 2 = + for <( - cos 9)< < .05

= 0 for (i - cos 9) < 0 (6,4)

Higher order terms may be obtained in the same way.

To second order:

-i e---- z [ (sin(C - n - - l)
2- e 2 n=O 2C + n )( 2)2

e ( -2 [2 + 2 p + n(n+ ( n )(_L)nPn d
202
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Qo e ir y [sin(C 2 2) cos(C - W-- )n(n+l)

JC -j L 2 ) _)nn2o

+ e 2 2 (2n+l)(-i)nPn(cOs Q)d4 (6.)c2

S cos( - n c ) sin(C - 1)
_e / 2 2 2 2

2n f n=O 2(2

o(2n+l)(-i)Pn (cos )dC , (6.6)

In this case

-Pcs C s2
e- -cn=O 9(-CVlOD-1) nPn(c Os 9) 2.....

sin( - fl'- -i

- 2 2

therefore by analogy, to second order:

-i( 1-)cosO 0o n sln(C - m-
e 2 E (2n+l)(- i)Pn [,, 2[:2 . +7E

C , oo n-0 con C -2C
222

This does not correspond exactly to the first two terms in PIIt

therefore we must subtract

' i e - !Lcos O
Si-" -O n)s - E-_istn(- - 2)(2n+l)(-i) (cos 9)

C 0 -- oo2t 2 2 2 n)

We also have, again to second order

+ i)e- 2 0 2 os(C.--- 1)
L + .)

i sin(C - n I) -

+..... (2n+)(-i) n Pn(COS 9).
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PI, can now be written:

-O-i( - )cos 0
P e 2

-i Cos 0 ie-i(c- M)cos
+ d+)( +

Q0 ei  i Cos Co
PI e + (l + iei 2 o

" I-2 el Cos

i 2(cos + i)(Cs9 1
= Qo e + 1- - cos Q)(l+P)(I + e i  (cos +1)

(-ecoso )e9 C for 0 < (u- cos9)<< .05

-0 for - cos 0) <0. (6.7)

Additional terms will be of little value since our

expansion is valid only for >, or (/- cos 9)< < .05.

The terms we have found so far however are sufficient to tell

us some things of importance.

The incoming wave will reach the point (1,G) on the

sphere at time z/% = cos 9. The initial pressure for each 9

6
is given by

6. The elastic waves in the shell will travel more rapidly-than
the acoustic waves and will result in a pressure, P # 0 at
(1,G) before the time T/X = cos 0, 0 # it However, this
effect is negligibly small compared with the one we are
considering.
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Ptotal = PI + RepII

=Q + Qofcos(.(cos 9+1)) 18[' - cos 9)[l+cos([(cosg+))]
0 2 K

+ 1[ Cos 9][cos(L Cos G))]' (6.8)

= Q + Q cos[ !(cos 9+1)], (6.9)
0 0 2

At @ = n the outermost point of the sphere, the first

effect is that of a plane wave hitting a rigid wall so that we

have
PII = PI' Ptotal = 2Q0

At Q =7c/2, the wave just grazes the sphere and therefore

PII =0; Ptota Q

As 9 varies from , to 7E/2, the initial pressure varies contin-

uously from 2Qo to Qo"

If the sphere were rigid, the steady state pressure

distribution would be given by

iPtotal 
= PI 0 Q @ ' .55

The results of section V indicate that we will have asymptotic

values of RQo/2 for the stresses and zero for the radial ac-

celeration, which also correspond to a uniform pressure of

Q0 = PI"

At present, this is about all that can be said on the

subject of the pressure distribution. A completely satisfactory

way of dealing with the problem will not be had until it is

possible to find the sum in (6.1).
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VII. Conclusions.

Both the stress and the acceleration for each mode can

readily be computed to any desired accuracy. For the stresst the

zeroth mode is by for the most important and this is closely

approximated by the zeroth mode of a sitaple quasi-static system

(p. 18). The acceleration on impact of the outermost portion

of the shell (9 = n) can be found exactly and is seen to differ

markedly from the accelerations associated with the individual

vibrational modes.

The problem here considered, apart from its intrinsic

interest, should serve as a valuable guide in the solution of

similar problems involving obstacles of more complicated shape,
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